

20/6/25 AN

RollNo. _____

--	--	--	--	--	--	--	--	--

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E. /B.Tech / B. Arch (Full Time) - END SEMESTER EXAMINATIONS, APR / MAY 2025

Department of ECE

III Semester

EC23C02 & ANALOG CIRCUITS DESIGN

(Regulation 2023)

Time: 3hrs

Max. Marks: 100

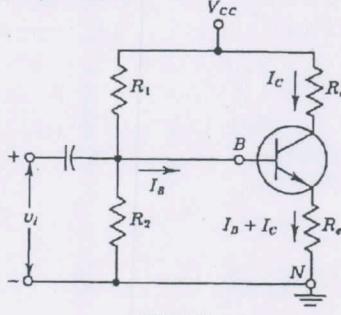
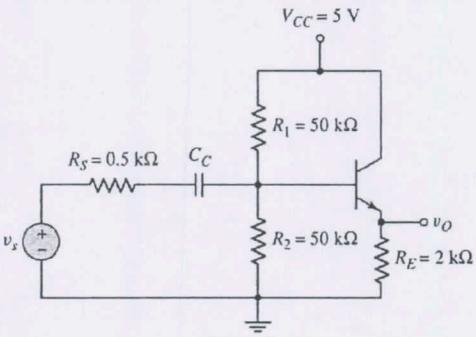
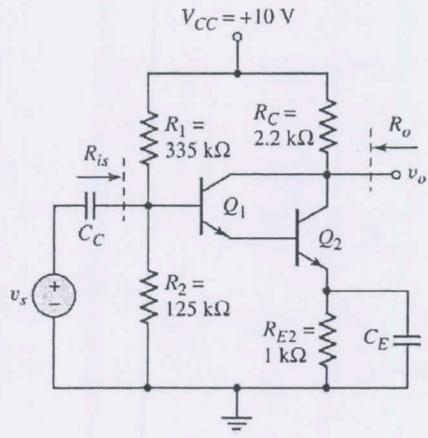
CO1	Choose appropriate biasing circuits for BJT and MOSFET discrete amplifiers
CO2	Design and analyze single stage and multistage BJT amplifiers
CO3	Analyze the characteristic of MOSFET amplifiers, the effect of source and load
CO4	Analyze the high frequency response of BJT and MOSFET amplifiers
CO5	Design and analyze IC MOSFET amplifiers

BL – Bloom's Taxonomy Levels

(L1-Remembering, L2-Understanding, L3-Applying, L4-Analysing, L5-Evaluating, L6-Creating)

PART - A (10x2=20Marks)
(Answer all Questions)

Q.No.	Questions	Marks	CO	BL
1	<p>For the circuit shown in Fig. 1, the parameters are: $V_{EB(on)}=0.6$ V, and $\beta=100$. Find I_B, I_C, I_E such that $V_{EC}=(1/2)V^+$.</p> <p>Fig. 1</p>	2	1	L2
2	<p>Sketch the DC load line for a BJT amplifier shown in Fig. 2 on the I_C-V_{CE} characteristic curves. Assume $V_{CC} = 12$ V, $R_C = 6\text{k}\Omega$</p> <p>Fig. 2</p>	2	1	L2




3	A common-emitter BJT amplifier has a $V_{CC}=10$ V and its quiescent operating point (Q-point) is set at $V_{CEQ}=5$ V. Assuming the output voltage swing is ideally limited by the distance to the saturation and cutoff regions, what is the maximum possible peak-to-peak output voltage swing?	2	2	L2
4	Two identical bipolar transistors, each with a current gain (β) of 50, are connected in a Darlington configuration. If the base current (I_B) entering the first transistor is $10\mu A$, what is the approximate collector current of the second transistor?	2	2	L2
5	Draw the small signal ac equivalent circuit of the amplifier shown in Fig. 3	2	3	L1
6	Calculate the drain current in an NMOS transistor with parameters $V_{TN}=0.8$ V, $k'_n=80 \mu A/V^2$, $W=10\mu m$, $L=1.2 \mu m$, and with applied voltages of $V_{DS}=0.1$ V and (a) $V_{GS}=0$ V, (b) $V_{GS}=1$ V.	2	3	L2
7	Describe the Miller effect and Miller capacitance.	2	4	L1
8	A bipolar transistor is biased at $I_{CQ}=1$ mA and has parameters $C_{\pi}=10 \text{ pF}$, $C_b=2 \text{ pF}$, and $\beta=120$. Determine f_B .	2	4	L2
9	Sketch the Current steering circuit and explain the operation	2	5	L1
10	Define the common-mode rejection ratio, CMRR. What is the ideal value?	2	5	L1

PART- B(5x 13=65Marks)

Q.No.	Questions	Marks	CO	BL
11 (a)	Design a bias-stable pnp transistor circuit shown in Fig. 4. The transistor Q-point values are to be: $V_{ECQ}=7$ V, $I_{CQ}\approx 0.5$ mA, and $V_{RE}\approx 1$ V. Assume transistor parameters of $\beta=80$ and $V_{EB(on)}=0.7$ V.	13	1	L4

Fig. 4

OR

11 (b)	<p>Design the self-bias circuit of Fig. 5 using a Si transistor type 2N3565 to meet the following specifications over the temperature range 25 to 65°C: $\Delta I_c/I_c \leq 15$ percent, V_{BE} at 25°C = 650 ± 50 mV, $V_{CC}=20$ V, β spread 150 to 600 at $I_c = 1$ mA and T=25°C, Lowest β at 25°C=150, highest β at 65°C=1,200, I_{CO} at 25°C = 50 nA max and I_{CO} at 65°C = 3.0 μA max</p> <p>Fig. 5</p>	13	1	L4
12 (a)	<p>i) Derive the small signal voltage gain, input, and output resistance of the emitter-follower circuit shown in Fig. 6.</p> <p>Fig. 6</p> <p>ii) Calculate the input and output resistance of the circuit shown in Fig. 6. Assume $R_s=0$, and the transistor parameters are: $\beta=100$, $V_{BE(on)}=0.7$ V, and $V_A=80$ V.</p>	8+5	CO2	L3
OR				
12 (b)	<p>i) Draw the small signal equivalent circuit for the amplifier shown in Fig. 7. Derive the expression for the overall small signal current gain β and input resistance R_{IS}.</p> <p>Fig. 7</p> <p>ii) Assume the parameters of each transistor in Fig. 7 are $\beta=100$ and $V_A = \infty$. Determine the input and output resistances, R_{IS} and R_o.</p>	8+5	CO2	L3

13 (a)

Design the bias resistors (R_1 , R_2) and the drain resistor (R_D) for the common-source NMOS amplifier circuit shown in Fig. 8 such that the Q-point is $I_{DQ}=2$ mA and located in the middle of the saturation region. Given $V_{DD}=12$ V and the constraint $R_1||R_2=100$ k Ω , and using a transistor with $V_{TN}=1$ V, $k_n=80\mu\text{A}/\text{V}^2$, $W/L=25$, and $\lambda=0.015$ V $^{-1}$, also determine the resulting small-signal voltage gain of the designed amplifier.

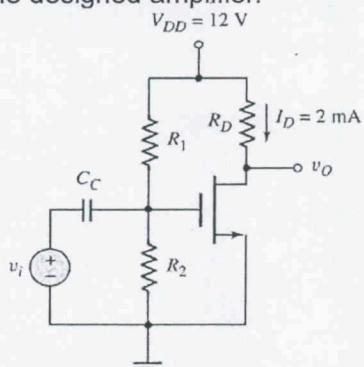


Fig. 8

13

CO3

L4

OR

13 (b)

The supply voltages to the cascode circuit in Fig. 9 are $V^+=10$ V and $V^-=-10$ V. The transistor parameters are: $K_{n1}=K_{n2}=4$ mA/V 2 , $V_{TN1}=V_{TN2}=1.5$ V, and $\lambda_1=\lambda_2=0$. Let $R_S=2$ k Ω , and assume the current in the bias resistors is 0.1 mA. (a) Design the circuit such that $I_{DQ}=5$ mA and $V_{DSQ1}=V_{DSQ2}=3.5$ V. (b) Determine the resulting small-signal voltage gain.

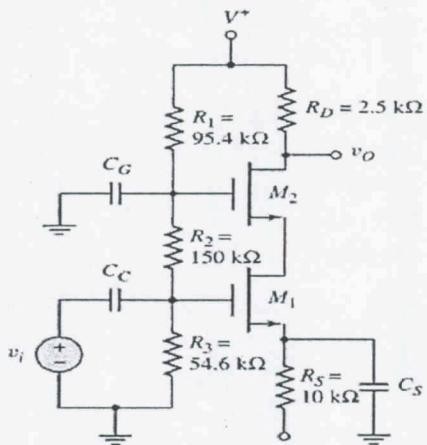


Fig. 9

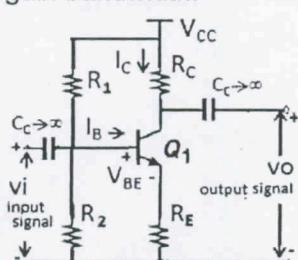
13

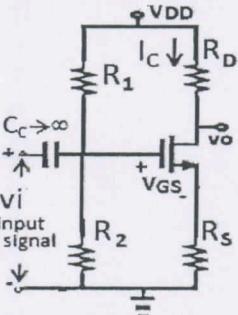
CO3

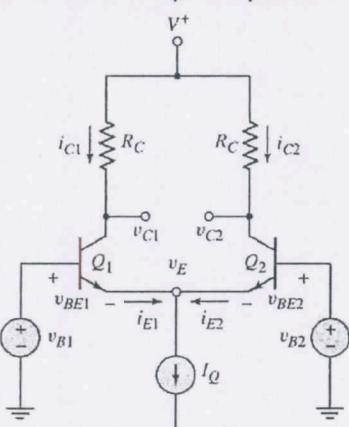
L4

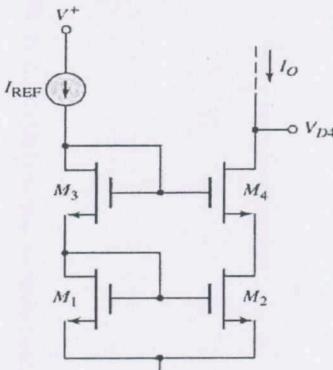
14 (a)

Derive the expression for the short-circuit current gain of the BJT in the circuit shown in Fig. 10. Derive the alpha, beta cut-off frequency, and unity-gain bandwidth.




Fig. 10


13


CO4

L3

OR

14 (b)	<p>Draw the high-frequency equivalent circuit for the CS amplifier circuit shown in Fig.11, and derive its voltage gain as a function of frequency. Derive its Miller capacitance and its upper corner frequency.</p> <p>Fig. 11</p>	13	CO4	L3
--------	--	----	-----	----

15 (a)	<p>Draw the small signal equivalent circuit for the BJT differential pair shown in Fig. 12 and derive its differential-mode and common-mode gain and CMRR. Discuss the effect of a non-ideal current source (I_Q) with finite output impedance R_o on the CMRR.</p> <p>Fig. 12</p>	13	CO5	L3
--------	---	----	-----	----

15 (b)	<p>i) Draw a basic two-transistor NMOS current source and derive the output current in terms of reference current and aspect ratio of two transistors.</p> <p>ii) Derive the output resistance of the cascode configuration shown in Fig. 13 and show that it is much larger than that of the basic two-transistor current source.</p> <p>Fig. 13</p>	6+7	CO5	L3
--------	---	-----	-----	----

PART- C(1x 15=15Marks)

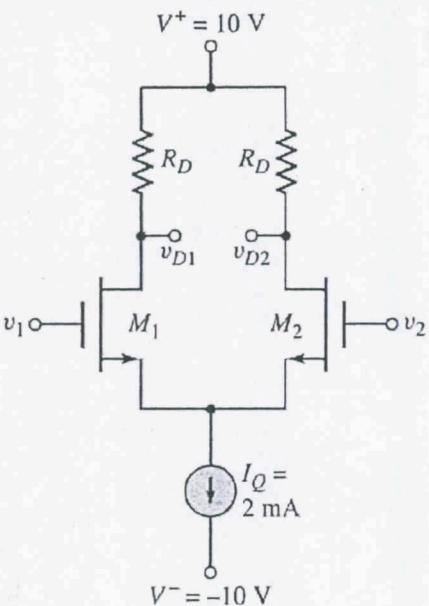
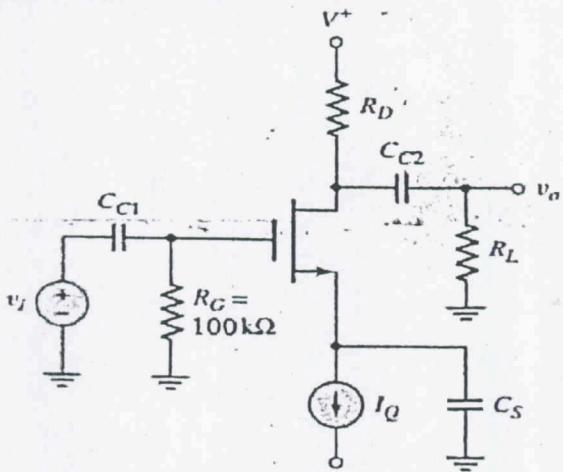


Q.No.	Questions	Marks	CO	BL
16.	<p>i) Design the circuit shown in Fig. 14 such that $v_o = v_{D1} - v_{D2} = 1$ V when $v_1 = -50$ mV and $v_2 = +50$ mV. The transistor parameters are $V_{TN} = 0.8$ V, $K_n = 0.4$ mA/V², and $\lambda = 0$.</p>	8	3	L6
	<p>ii) The amplifier shown in the Figure 15 has parameters $V_{TN} = 0.8$ V, $K_n = 100 \mu\text{A}/\text{V}^2$, $W/L = 50$, and $\lambda = 0.02 \text{ V}^{-1}$. The circuit parameters are $V^+ = 6$ V, $V^- = -6$ V, $I_Q = 0.5$ mA, and $R_D = 6 \text{ k}\Omega$. Evaluate the small-signal voltage gain for $R_L = 10 \text{ k}\Omega$ and determine the output resistance.</p>	7	3	L5

Fig. 15